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A refined model of dielectric relaxation in uniaxial liquid crystals 

by ANDRZEJ KOZAK* and JOZEF K. MOSCICKI 
Institute of Physics, Jagellonian University, ul. Reymonta 4, 

PL 30-059 Krakow, Poland 

(Received 6 November 1991; accepted 6 February 1992) 

A refined approach to dielectric relaxation in uniaxial liquid crystals based on 
the linear response concept is presented. The model is based on the expansion of the 
conditional probability function in terms of the probability function evolution 
operator eigenfunctions (instead of the Wigner functions). As a result, the time 
dependence of the expansion coefficients &(t) is not, in general, a single exponential 
Wigner matrix element autocorrelation function. 

1. Introduction 
Dielectric relaxation spectra of classical thermotropic liquid crystals usually 

consists of two well-separated domains for measurements parallel to the order director, 
and two less obviously separated domains for a perpendicular experimental geometry 
[ 11. Theoretical models which have been proposed to explain the observed spectra 
have considered a number of different particular mechanisms of molecular rotational 
motions responsible for the relaxation C2-6). The most renowned of them, a theory of 
rotational diffusion by Nordio et al. [2], was successfully applied to analyse 
experimental data by Parneix [ 1 a] in what has been by all means the most complete 
experimental study of dielectric relaxation in classical thermotropic liquid crystals. 

In a previous paper [7] we outlined a model of dielectric relaxation in uniaxial 
liquid crystals based on the Kubo linear response theory [8]. The proposed model 
followed the original idea of Nordio et al. [2]; however, we avoided the necessity of 
specifying mechanisms for the molecular motions involved. As a result, it was shown in 
[7] that a commonly observed characteristic of dielectric relaxation spectra in liquid 
crystals should be associated with the structure of the phase (symmetry of a pseudo 
potential acting on a molecule), rather than a particlar mechanism of the motion. In a 
sense [7] also offered unified explanation of similar results obtained from different 
existing models of dielectric relaxation in liquid crystals C2-63. 

The development of such a universal approach to dielectric relaxation was 
necessitated by the synthesis of a new class of liquid-crystalline materials, i.e. the side 
chain polymer liquid crystals in recent years. Surprisingly, despite the very complicated 
molecular structure of these polymers, observed dielectric relaxation spectra qualita- 
tively resemble those of classical monomer liquid crystals [l c, 9-12]. Clearly, steric 
hindrance prevents a simple reorientation of the side chain mesogenic unit about its 
long or short axes in the polymer. Reorientations of the unit, if any, are possible only as 
a result of highly cooperative motions involving both rotation and translation of the 
unit and of the neighbouring environment. Therefore, any particular assumption about 
the mechanism of the reorientation in the polymer liquid crystals is doubtful. 
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The results of [7] have been used in semiquantitative analysis of experimental data 
for side chain polysiloxanes [9, lo]. However, despite its apparent success, [7] needs 
refinement. In the course of the model development a few simplifying assumptions were 
made, and they will be eliminated in the present paper. The first, the (orientational) 
conditional probability function P(R/Ro; t), was assumed to be expandable in the basis 
of Wigner functions (cf. later). This assumption often seems to be justified, but in 
general, the Wigner functions may not be eigenfunctions of the evolution operator of 
the probability function. As a consequence of the above assumption, [7] predicted 
relaxation modes as single exponential correlation functions. The second, the 
restriction that P(R/Ro; t) has to converge to P(Q), the (stationary) distribution function 
at long times, 

has not been considered. As shown later, the above condition enforces important 
selection rules on the probability function expansion coefficients. For clarity of 
presentation, in the following section we redevelop the model incorporating the 
previously mentioned changes and improvements. 

2. Theory 
In order to investigate how the stochastic rotational dynamics of molecules 

influences the dielectric spectra of liquid crystals, we apply the linear response concept 
[2]. Because of the complexity of the local field problem, which has yet to be solved, we 
make a simplifying assumption by writing a relation between the complex dielectric 
permittivity, &(o), and the correlation function as 

6kk(o)-Ek(GO)= GkLi,{ - Y k ( t ) ) ,  (1) 
where G,, the total local field factor, is assumed frequency independent, Y k ( t )  is the 
unnormalized correlation function of the k component of the dipole moment, o is the 
angular frequency, and & k ( a )  denotes the high frequency limit of the dielectric constant, 
L,, denotes the Laplace transform. Neglecting the frequency dependence of the local 
field factor, we inevitably lose some of the fine details of the cooperative motions 
leading to dielectric relaxation which are responsible for the detailed frequency 
dependence of each dielectric relaxation process. However, in [7] and in the present 
work we are primarily concerned with the complexity of the dielectric spectra of liquid 
crystals, and we believe that for this purpose the assumption is justified. Hence, the 
following discussion will be restricted to the behaviour of the dipole moment 
autocorrelation function [13]. 

Let the z axis of the molecular frame {x, y, z }  be the long axis of the molecule, and 
the Z axis of the laboratory frame ( X ,  X Z }  bz the director axis, n, of a liquid-crystalline 
phase. The molecular motion is assumed to be the stochastic stationary Markov 
process [I41 for which the eulerian angles R =(a, fl, y )  of the molecular frame with 
respect to [2,7] form a three dimensional stochastic variable. Therefore, a knowledge 
of the first conditional (orientational) probability distribution function and the 
stationary distribution function is necessary for calculation of a correlation function of 
interest. The conditional and stationary probability distribution function should be 
continuous almost everywhere (in mathematical sense), since employing the assump- 
tion of continuity, the (orientational) probability distribution function can be always 
expanded in terms of any orthogonal and complete set of functions. 
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Assuming that the probability distribution function, P(Q, t), fulfills the equation of 
evolution 

where D is the evolution operator for P(Q t). In contrast to [7], we expand P(Q t )  in 
terms of eigenfunctions of I0 instead of Wigner matrix elements 

where ~ , ( t ) =  l&(O) exp (a{,,&), and a{,,, are eigenvalues of D. As P(R, t )  should be the 
conditional probability distribution function, the initial condition, Cl E Ro at t = 0, has 
to be imposed 

P(R, 0) = s(n - QO), (4) 

where is the position of the molecule at the initial time. Assuming the completeness of 
the set of Yim(S2) functions, we can write [l5] 

Substitution of equation (4) into this equation and comparison of the result with 
equation (3) for t = 0, yields 

H m ( 0 )  = YL (6) 

where the use of the orthogonality of the base {Y~,(SZ)> was made. The conditional 
probability distribution can be now written as 

where a{,,,@) are the normalized time dependent coefficients of the expansion; 
aim(t) = exp (a{,t). 

We recall at this point, that in [7] we expanded P(!2/Oo) in terms of Wigner 
functions. Usually such a procedure is justified but since the Wigner function may not 
be in the general case the eigenfunction of D, the time dependence of the expansion 
coefficients may not be of a single exponent function. 

Since Wigner functions form also the base set of functions in the space of eulerian 
angles, Y{m(i2) can be expanded in the following way: 

Hence, 
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Also the one particle stationary orientational probability distribution function is 
similarly expanded in terms of Wigner functions [ 11 

where a,= (PA/?)) is the liquid-crystalline phase (orientational) order parameter of j 
rank, and P,@) is the Legendre polynomial of j order. 

Finally, since we are considering a stationary Markov process, so 

Until this point, considerations were quite general, and had not yet involved the 
symmetry of a liquid-crystalline phase. Since we restrict our attention to uniaxial 
nematic and smectic phases with point symmetry, the symmetry implies the same 
symmetry on P(Qo) and, thus, subscript j has to take even values ( j  = 2k). Therefore, for 
uniaxial liquid crystals equation (11) gives in the limit 

From equation (12) it follows that: 

(i) the left hand side of equation (12) has to be 0, independent, so all a!,,, have to be 
negative or equal to 0; 

(ii) since equation (4) should be simultaneously fulfilled, only = 0, and the 
following rules are imposed on superscripts and subscripts, and expansion 
coefficients: L= M = 1, K = N = m, and egy = ~ o ~ & o .  

This leads us to the final form of the conditional probability distribution function 

or, in more compact form 

where 

and W!" = W j l m  
JJ - 1mP 

We are ready now to calculate the dipole moment correlation functions. As usual, 
the dipole moment in the molecular frame is conviently expressed in terms of 
components of the first rank irreducible spherical tensor [7,16] 
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Dielectric relaxation in uniaxial liquid crystals 38 1 

The components of the dipole moment in the laboratory frame are then expressed by 
components in the molecular frame in the following manner [7 ] :  

where Ci:mn are the Clebsch-Gordon coefficients. Thus, finally, the dipole moment 
component correlation functions take the form 

(P,(O)P,(t)) = AOO(t)PL:. + AOl(tIPt2 

(PX(O)PX(t)) = AlO(t)PL:. + A1 l(tIPt2. 

(21 a)  

(21 b) 

and 

Substitution of equations (21) into equation (1) yields final results for the complex 
dielectric permittivity of the liquid-crystalline phase 

E^ 1 1  (4 - ,, ( 00) = KT GI1 Wfi (0; S )  + P T q  (0; S)l (22 a)  
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and 

where subscripts 11 and I denote two basic geometries of an experiment: the probing 
electric field either parallel or perpendicular to the director axis, respectively. F ( o ;  S )  
are Fourier transforms of linear combinations of appropriate correlation functions of 
Wigner natrices (cf. equation (19)); p, and p, denote the longitudinal and transverse 
components of the molecular dipole moment, p: = p: and p; = p: + p;, respectively. 

It has to be emphasized once again, that these results are obtained without any 
assumption about the mechanism of reorientation, solely benefiting from the point 
symmetry of the phase. 

3. Discussion 
We note first of all that all major qualitative results of [7] are recovered in the 

present version of our model. The model confirms the existence of four relaxation 
domains in uniaxial liquid-crystalline materials, associated with the structure of the 
phase (the point symmetry of the potential). Consequently, our work demonstrates that 
the qualitative agreement of any particular model of stochastic reorientational 
dynamics with experiment, should not be considered as a convincing confirmation of 
the appropriateness of the theory but subsequent quantitative considerations are 
necessary. 

Another very important result of [7] which survived the mathematical improve- 
ment of our model is the explicit dependence of particular terms in equations (21) upon 
particular eulerian angles (via correlation functions). Knowing that Dh(n) functions 
are the matrix elements of the rotation operator: 

R(n) = exp (- iJ,y) exp (- iJ,.) exp (- iJ,cr), i = J - 1, (23) 

where J,, %, are the angular momentbm operators (x and z components), particular 
molecular reorientations can be explicitly linked to particular relaxation domains in 
dielectric spectra [7]. Comparing results of [7] 

and 

with equations (22), shows that the present results are less detailed, i.e. they do not carry 
the explicit and simple dependence of [E^,,(o) - E II (co)] and [E Î(o) - E,( co)] on S, 
characteristic for equations (24). The form of the final results in [7] followed from an 
implicit assumption that P(sZ/Q,; t )  can be expanded in terms of Wigner functions, thus 
expansion coefficients being single exponent functions of time. However, through this 
assumption an influence of the liquid-crystalline phase symmetry on the dynamic 
behaviour of the molecule was neglected, and that has been eliminated in the current 
version of the model. 
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Despite previously mentioned differences between former and present results, 
dielectric increments, AEk = & k ( O ) - & k ( w ) ,  k =  1) or I, calculated from either equations 
(22) and equations (24) give the same well-known results [l,  71 

G A&,, = ~ ~ ~ ( 0 )  - ~~,(co) =l [(1+ 2S)p: + (1 - S)p?] 
3 k T  

and 

The latter, together with the complex structure of F{(w; S)’s in equations (22), offer a 
possible indication of non-Debye-like character of most of the relaxation domains in 
experimentally observed spectra. 

We note also that the procedure which imposes the ‘selection rules’ on subscripts 
and superscripts in expansions of probability distribution functions, as a result of 
restriction 

W l Q &  t )  t-, P(Qh 

(cf. earlier) is quite general and can be used in order to obtain a qualitative description of 
dielectric spectra of less symmetric liquid-crystalline phases and this will be done 
elsewhere. 

The final remark concerns the continuity restriction imposed on probability 
distribution functions. Despite apparent limitations, the model can be used to describe 
a broad class of reorientational motions, including also molecular dynamics as jumps 
between some equilibrium states 141, since these are rather jumps between regions than 
discrete states. It is quite easy to construct an appropriate model for a continuous 
orientational probability distribution function which has strong and well-separated 
peaks, so the probability of the passage between remote regions of their domains is 
greater than for the nearest neighbourhood thus making our formalism applicable. 
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